Efficient Solutions for Uncertain Random Multiobjective Programming Problem
نویسندگان
چکیده
Based on the chance theory, which is founded for modeling complex systems with not only uncertainty but also randomness, this paper is devoted to studying a new kind of multiobjective programming problem where randomness and uncertainty exist simultaneously, called uncertain random multiobjective programming (URMOP) problem. Since an uncertain random variable does not admit an order relationship, different statistical characteristics can produce different relationship sense between two uncertain random variables. Starting from this idea, several different concepts of Pareto efficient solutions to URMOP problem are provided on the basis of statistical characteristics, such as expected-value efficiency, expected-value variance efficiency, maximum chance efficiency, etc.. Our study enables us to determine what type of efficient solutions should be considered in URMOP problem by each of these concepts. c ©2014 World Academic Press, UK. All rights reserved.
منابع مشابه
Optimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...
متن کاملCharacterization of Properly Efficient Solutions for Convex Multiobjective Programming with Nondifferentiable vanishing constraints
This paper studies the convex multiobjective optimization problem with vanishing constraints. We introduce a new constraint qualification for these problems, and then a necessary optimality condition for properly efficient solutions is presented. Finally by imposing some assumptions, we show that our necessary condition is also sufficient for proper efficiency. Our results are formula...
متن کاملA General Scalar-Valued Gap Function for Nonsmooth Multiobjective Semi-Infinite Programming
For a nonsmooth multiobjective mathematical programming problem governed by infinitely many constraints, we define a new gap function that generalizes the definitions of this concept in other articles. Then, we characterize the efficient, weakly efficient, and properly efficient solutions of the problem utilizing this new gap function. Our results are based on $(Phi,rho)-$invexity,...
متن کاملA Survey on Different Solution Concepts in Multiobjective Linear Programming Problems with Interval Coefficients
Optimization problems have dedicated a branch of research to themselves for a long time ago. In this field, multiobjective programming has special importance. Since in most real-world multiobjective programming problems the possibility of determining the coefficients certainly is not existed, multiobjective linear programming problems with interval coefficients are investigated in this paper. C...
متن کاملCharacterization of efficient points of the production possibility set under variable returns to scale in DEA
We suggest a method for finding the non-dominated points of the production possibility set (PPS) with variable returns to scale (VRS) technology in data envelopment analysis (DEA). We present a multiobjective linear programming (MOLP) problem whose feasible region is the same as the PPS under variable returns to scale for generating non-dominated points. We demonstrate that Pareto solutions o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014